

CONTRIBUIÇÃO DA MICROBIOTA ATIVA PARA A PRODUÇÃO E OXIDAÇÃO DE CH₄ EM PLANÍCIES ALUVIAIS AMAZÔNICAS

BARROS, Dayane Juliate¹; NEU, Vania²; CARMO, Janaina B. do³; MORAIS, Paula Benevides de⁴; NAVARRETE, Acacio Aparecido⁵

RESUMO

Introdução: Planícies aluviais amazônicas são consideradas as maiores fontes de emissão natural de metano (CH₄) nos trópicos, um importante gás de efeito estufa. Partindo da premissa da ciclagem de CH₄ ser mediada por micro-organismos é surpreendente que o papel da comunidade microbiana ainda não esteja completamente elucidado em áreas inundáveis. **Objetivo**: Este estudo visa compreender a relação entre o fluxo difusivo de CH₄ (FCH₄) e a atividade funcional da microbiota ativa em sítios florestais (FLO) e sistemas de agricultura tradicionais (SAT) sazonalmente inundados com diferentes tipos de água amazônica, ou seja, água negra, branca e clara. Material e métodos: Os FCH4 in situ foram medidos a partir do solo (período não-inundado) e na interface ar-água (período inundado) utilizando o método de câmara. A atividade microbiana foi investigada utilizando cDNA obtido por transcrição reversa e os principais genes funcionais para metanogênese (metil coenzima M redutase; mcrA) e oxidação de CH₄ (particulado de metano monooxigenase; pmoA), utilizando a técnica de PCR quantitativo em Tempo Real (qPCR). **Resultados**: Medidas de FCH₄ revelaram que, em sua maioria, os sítios amostrais desempenharam papel de consumo de CH₄ durante o período não-inundado. O sítio amostral (SAT) na planície de inundação de água negra apresentou o maior potencial de consumo de CH₄ (-0,16 mmol m⁻² dia⁻¹). Já os FCH₄ na interface água-atmosfera revelaram as maiores emissões em planície de inundação de água clara. Os dados de qPCR mostraram que a abundância de metanogênicas em águas claras foi a menor entre os três tipos de águas (mcrA: 8,4 x 10⁴ cópias por grama de solo – sítio FLO e 1,28 x 10⁵ cópias por grama de solo – sítio SAT). Os metanotróficos foram mais abundantes durante o período não-inundado no sítio FLO de água branca (1,82 x 10⁵ cópias por grama de solo). Conclusão: Os resultados obtidos mostraram que embora a quantidade de cópias do gene mcrA em sítio FLO e SAT em planície aluvial de águas claras tenha sido a menor mensurada no período inundado, outras variáveis ambientais além da abundância de metanogênicas foram preponderantes na definição dos maiores fluxos de CH₄ nessa área inundável da Amazônia

Palavras-chave: fluxos de CH₄, mcrA, pmoA, qPCR.

¹Universidade Federal de Tocantins, Palmas. E-mail: dayjuliat@uft.edu.br.

²Instituto Socioambiental e dos Recursos Hídricos, Bélem. E-mail: bioneu@yahoo.com.br.

³Universidade Federal de São Carlos, Sorocaba. E-mail: jbcarmo2008@gmail.com.

⁴Universidade Federal de Tocantins, Palmas. E-mail: moraispb@mail.uft.edu.br.

⁵Universidade Federal de Mato Grosso do Sul, Chapadão do Sul. E-mail: acacionavarrete@gmail.com\SBN 978-65-88884-02-7